【G検定】自己符号化器

G検定

自己符号化器はニューラルネットワークによる教師なし学習の代表的な応用であり,出力が入力に近づくようにニューラルネットを学習させる.主に次元削減のために利用されることが多く,活性化関数に恒等写像を用いた場合の 3 層の自己符号化器は主成分分析(PCA)と同様の結果を返す.自己符号化器を多層化すると,ディープニューラルネット同様に勾配消失問題が生じるため,複雑な内部表現を得ることは困難であった.この問題に対して 2006 年頃にHintonらは,単層の自己符号化器に分割し入力層から繰り返し学習させる層ごとの貪欲法を積層自己符号化器に適用することで,汎用的な自己符号化器の利用を可能とした.また,自己符号化器の代表的な応用例として仮想計測がある.

タイトルとURLをコピーしました